677 research outputs found

    ESO 3060170 -- a massive fossil galaxy group with a heated gas core?

    Full text link
    We present a detailed study of the ESO 3060170 galaxy group combining Chandra, XMM and optical observations. The system is found to be a fossil galaxy group. The group X-ray emission is composed of a central dense cool core (10 kpc in radius) and an isothermal medium beyond the central 10 kpc. The region between 10 and 50 kpc (the cooling radius) has the same temperature as the gas from 50 kpc to 400 kpc although the gas cooling time between 10 and 50 kpc (2 - 6 Gyr) is shorter than the Hubble time. Thus, the ESO 3060170 group does not have a group-sized cooling core. We suggest that the group cooling core may have been heated by a central AGN outburst in the past and the small dense cool core is the truncated relic of a previous cooling core. The Chandra observations also reveal a variety of X-ray features in the central region, including a ``finger'', an edge-like feature and a small ``tail'', all aligned along a north-south axis, as are the galaxy light and group galaxy distribution. The proposed AGN outburst may cause gas ``sloshing'' around the center and produce these asymmetric features. The observed flat temperature profile to 1/3 R_vir is not consistent with the predicted temperature profile in recent numerical simulations. We compare the entropy profile of the ESO 3060170 group with those of three other groups and find a flatter relation than that predicted by simulations involving only shock heating, S ∝\propto r 0.85^{~ 0.85}. This is direct evidence for the importance of non-gravitational processes in group centers. We derive the mass profiles within 1/3 R_vir and find the ESO 3060170 group is the most massive fossil group known (1 - 2 X 1014^{14} M⊙_{\odot}). The M/L ratio of the system, ~ 150 at 0.3 R_vir, is normal.Comment: 17 pages, 12 figures, to appear in ApJ. A high-resolution version can be downloaded from http://cxc.harvard.edu/~msun/esoa.p

    CHANDRA observations of the NGC 1550 galaxy group -- implication for the temperature and entropy profiles of 1 keV galaxy groups

    Full text link
    We present a detailed \chandra study of the galaxy group NGC 1550. For its temperature (1.37±\pm0.01 keV) and velocity dispersion (∌\sim 300 km s−1^{-1}), the NGC 1550 group is one of the most luminous known galaxy groups (Lbol_{\rm bol} = 1.65×1043\times10^{43} erg s−1^{-1} within 200 kpc, or 0.2 \rv). We find that within ∌60\sim 60 kpc, where the gas cooling time is less than a Hubble time, the gas temperature decreases continuously toward the center, implying the existence of a cooling core. The temperature also declines beyond ∌\sim 100 kpc (or 0.1 \rv). There is a remarkable similarity of the temperature profile of NGC 1550 with those of two other 1 keV groups with accurate temperature determination. The temperature begins to decline at 0.07 - 0.1 \rv, while in hot clusters the decline begins at or beyond 0.2 \rv. Thus, there are at least some 1 keV groups that have significantly different temperature profiles from those of hot clusters, which may reflect the role of non-gravitational processes in ICM/IGM evolution. NGC 1550 has no isentropic core in its entropy profile, in contrast to the predictions of `entropy-floor' simulations. We compare the scaled entropy profiles of three 1 keV groups (including NGC 1550) and three 2 - 3 keV groups. The scaled entropy profiles of 1 keV groups show much larger scatter than those of hotter systems, which implies varied pre-heating levels. We also discuss the mass content of the NGC 1550 group and the abundance profile of heavy elements.Comment: emulateapj5.sty, 18 pages, 11 figures (including 4 color), to appear in ApJ, v598, n1, 20 Nov 200

    X-ray Over-Luminous Elliptical Galaxies: A New Class of Mass Concentrations in the Universe?

    Get PDF
    We detect four isolated, X-ray over-luminous (Lx>2e43 [h/0.5]**-2 erg/s) elliptical galaxies (OLEGs) in our 160 square degree ROSAT PSPC survey. The extent of their X-ray emission, total X-ray luminosity, total mass, and mass of the hot gas in these systems correspond to poor clusters, and the optical luminosity of the central galaxies (M_R<-22.5 + 5 lg h) is comparable to that of cluster cDs. However, there are no detectable fainter galaxy concentrations around the central elliptical. The mass-to-light ratio within the radius of detectable X-ray emission is in the range 250-450 Msun/Lsun, which is 2-3 times higher than typically found in clusters or groups. These objects can be the result of galaxy merging within a group. However, their high M/L values are difficult to explain in this scenario. OLEGs must have been undisturbed for a very long time, which makes them the ultimate examples of systmes in hydrostatic equilibrium. The number density of OLEGs is n=2.4(+3.1-1.2}x10**-7 (h/0.5)**-3 Mpc**-3 at the 90% confidence. They comprise 20% of all clusters and groups of comparable X-ray luminosity, and nearly all galaxies brighter than M_R=-22.5. The estimated contirubution of OLEGs to the total mass density in the Universe is close to that of T>7 keV clusters.Comment: 4 pages, 2 figures, uses emulateapj.sty, submitted to ApJ Letter

    Evolution of the Cluster X-ray Luminosity Function

    Full text link
    We report measurements of the cluster X-ray luminosity function out to z=0.8 based on the final sample of 201 galaxy systems from the 160 Square Degree ROSAT Cluster Survey. There is little evidence for any measurable change in cluster abundance out to z~0.6 at luminosities less than a few times 10^44 ergs/s (0.5-2.0 keV). However, between 0.6 < z < 0.8 and at luminosities above 10^44 ergs/s, the observed volume densities are significantly lower than those of the present-day population. We quantify this cluster deficit using integrated number counts and a maximum-likelihood analysis of the observed luminosity-redshift distribution fit with a model luminosity function. The negative evolution signal is >3 sigma regardless of the adopted local luminosity function or cosmological framework. Our results and those from several other surveys independently confirm the presence of evolution. Whereas the bulk of the cluster population does not evolve, the most luminous and presumably most massive structures evolve appreciably between z=0.8 and the present. Interpreted in the context of hierarchical structure formation, we are probing sufficiently large mass aggregations at sufficiently early times in cosmological history where the Universe has yet to assemble these clusters to present-day volume densities.Comment: 15 pages, 10 figures, accepted for publication in Ap

    Dark matter line emission constraints from NuSTAR observations of the Bullet Cluster

    Get PDF
    Line emission from dark matter is well motivated for some candidates e.g. sterile neutrinos. We present the first search for dark matter line emission in the 3-80keV range in a pointed observation of the Bullet Cluster with NuSTAR. We do not detect any significant line emission and instead we derive upper limits (95% CL) on the flux, and interpret these constraints in the context of sterile neutrinos and more generic dark matter candidates. NuSTAR does not have the sensitivity to constrain the recently claimed line detection at 3.5keV, but improves on the constraints for energies of 10-25keV.Comment: 7 pages, 5 figures, submitted to Ap

    A Richness Study of 14 Distant X-ray Clusters From the 160 Square Degree Survey

    Get PDF
    We have measured the surface density of galaxies toward 14 X-ray-selected cluster candidates at redshifts greater than z=0.46, and we show that they are associated with rich galaxy concentrations. We find that the clusters range between Abell richness classes 0-2, and have a most probable richness class of one. We compare the richness distribution of our distant clusters to those for three samples of nearby clusters with similar X-ray luminosities. We find that the nearby and distant samples have similar richness distributions, which shows that clusters have apparently not evolved substantially in richness since redshift z =0.5. We compare the distribution of distant X-ray clusters in the L_x--richness plane to the distribution of optically-selected clusters from the Palomar Distant Cluster Survey. The optically-selected clusters appear overly rich for their X-ray luminosities when compared to X-ray-selected clusters. Apparently, X-ray and optical surveys do not necessarily sample identical mass concentrations at large redshifts. This may indicate the existence of a population of optically rich clusters with anomalously low X-ray emission. More likely, however, it reflects the tendency for optical surveys to select unvirialized mass concentrations, as might be expected when peering along large-scale filaments.Comment: The abstract has been abridged. Accepted for publication in the Astrophysical Journa

    The 160 Square Degree ROSAT Survey: the Revised Catalog of 201 Clusters with Spectroscopic Redshifts

    Get PDF
    We present the revised catalog of galaxy clusters detected as extended X-ray sources in the 160 Square Degree ROSAT Survey, including spectroscopic redshifts and X-ray luminosities for 200 of the 201 members. The median redshift is z~0.25 and the median X-ray luminosity is 4.2e+43 erg/s/h50^2 (0.5-2.0 keV). This is the largest high-redshift sample of X-ray selected clusters published to date. There are 73 objects at z>0.3 and 22 objects at z>0.5 drawn from a statistically complete flux-limited survey with a median object flux of 1.4d-13 erg/cm^2/s. We describe the optical follow-up of these clusters with an emphasis on our spectroscopy which has yielded 155 cluster redshifts, 110 of which are presented here for the first time. These measurements combined with 45 from the literature and other sources provide near-complete spectroscopic coverage for our survey. We discuss the final optical identifications for the extended X-ray sources in the survey region and compare our results to similar X-ray cluster searches.Comment: 17 pages, 7 figs, accepted for publication in ApJ, a version with full resolution images is available at http://www.eso.org/~cmullis/papers/160sd-catalog.ps.gz, machine-readable versions of the catalog are available at http://www.eso.org/~cmullis/research/160sd-catalog.htm

    INTEGRAL/SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane

    Full text link
    The center of our Galaxy is a known strong source of electron-positron 511-keV annihilation radiation. Thus far, however, there have been no reliable detections of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (INTErnational Gamma-RAy Astrophysics Laboratory) mission, launched in Oct. 2002, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high resolution coded-aperture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution and energy resolution. We report results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic Plane. No positive annihilation flux was detected outside of the central region (|l| > 40 deg) of our Galaxy. In this paper we describe the observations and data analysis methods and give limits on the 511-keV flux.Comment: Accepted for publication in the Astrophysical Journal. 13 pages, 3 figure
    • 

    corecore